Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
EJHaem ; 4(1): 226-231, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2285796

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) arising in the spleen, also known as primary splenic DLBCL (PS-DLBCL), is a rare form of malignant lymphoma. It is defined as a lymphoma confined to the spleen or involving splenic hilar lymph nodes. Here we report a case of PS-DLBCL with CD30. The patient was a 62-year-old who presented with 2 weeks of left flank pain, chills, and abdominal distension. Computed tomography identified an 8-cm splenic mass with central necrosis interpreted as an abscess. A drain was placed, yielding purulent necrotic material; cytologically, only neutrophils were identified. However, purulent drainage continued for 28 days without resolution, prompting splenectomy. Pathological dissection revealed a multinodular mass with central necrosis. Microscopic examination revealed extensive karyorrhexis, abundant ghosts of large cells, and scattered large cells with pleomorphic, multilobated, and vesicular nuclei with moderately abundant cytoplasm. Immunohistochemical staining revealed large, atypical cells positive for CD20, CD30, CD45, PAX5, MYC (>40%), MUM1 (>30%), and p53 (focally). The large cells were negative for CD3 (polyclonal), CD4, CD5, CD8, CD10, CD15, CD34, BCL2, BCL6, AE1/AE3, S100, HHV8, and ALK. The Ki-67 proliferation rate was approximately 80% in large cells. Notably, this PS-DLBCL was positive for CD30, an unusual finding among non-Hodgkin B-cell lymphomas, which, coupled with the Reed-Sternberg-like morphology, raised the possibility of classic Hodgkin lymphoma. Therefore, we reviewed the literature to confirm the unique features of this large B-cell lymphoma, its abscess-like appearance, and its expression of CD30.

2.
Front Mol Biosci ; 9: 821137, 2022.
Article in English | MEDLINE | ID: covidwho-1993802

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which results from the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant global public health threat, with molecular mechanisms underlying its pathogenesis largely unknown. In the context of viral infections, small non-coding RNAs (sncRNAs) are known to play important roles in regulating the host responses, viral replication, and host-virus interaction. Compared with other subfamilies of sncRNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), tRNA-derived RNA fragments (tRFs) are relatively new and emerge as a significant regulator of host-virus interactions. Using T4 PNK-RNA-seq, a modified next-generation sequencing (NGS), we found that sncRNA profiles in human nasopharyngeal swabs (NPS) samples are significantly impacted by SARS-CoV-2. Among impacted sncRNAs, tRFs are the most significantly affected and most of them are derived from the 5'-end of tRNAs (tRF5). Such a change was also observed in SARS-CoV-2-infected airway epithelial cells. In addition to host-derived ncRNAs, we also identified several small virus-derived ncRNAs (svRNAs), among which a svRNA derived from CoV2 genomic site 346 to 382 (sv-CoV2-346) has the highest expression. The induction of both tRFs and sv-CoV2-346 has not been reported previously, as the lack of the 3'-OH ends of these sncRNAs prevents them to be detected by routine NGS. In summary, our studies demonstrated the involvement of tRFs in COVID-19 and revealed new CoV2 svRNAs.

3.
Elife ; 102021 09 28.
Article in English | MEDLINE | ID: covidwho-1441361

ABSTRACT

High-throughput genomics of SARS-CoV-2 is essential to characterize virus evolution and to identify adaptations that affect pathogenicity or transmission. While single-nucleotide variations (SNVs) are commonly considered as driving virus adaption, RNA recombination events that delete or insert nucleic acid sequences are also critical. Whole genome targeting sequencing of SARS-CoV-2 is typically achieved using pairs of primers to generate cDNA amplicons suitable for next-generation sequencing (NGS). However, paired-primer approaches impose constraints on where primers can be designed, how many amplicons are synthesized and requires multiple PCR reactions with non-overlapping primer pools. This imparts sensitivity to underlying SNVs and fails to resolve RNA recombination junctions that are not flanked by primer pairs. To address these limitations, we have designed an approach called 'Tiled-ClickSeq', which uses hundreds of tiled-primers spaced evenly along the virus genome in a single reverse-transcription reaction. The other end of the cDNA amplicon is generated by azido-nucleotides that stochastically terminate cDNA synthesis, removing the need for a paired-primer. A sequencing adaptor containing a Unique Molecular Identifier (UMI) is appended to the cDNA fragment using click-chemistry and a PCR reaction generates a final NGS library. Tiled-ClickSeq provides complete genome coverage, including the 5'UTR, at high depth and specificity to the virus on both Illumina and Nanopore NGS platforms. Here, we analyze multiple SARS-CoV-2 isolates and clinical samples to simultaneously characterize minority variants, sub-genomic mRNAs (sgmRNAs), structural variants (SVs) and D-RNAs. Tiled-ClickSeq therefore provides a convenient and robust platform for SARS-CoV-2 genomics that captures the full range of RNA species in a single, simple assay.


Subject(s)
Base Sequence , Coronavirus/genetics , Genome, Viral , RNA , SARS-CoV-2/genetics , COVID-19/virology , DNA, Complementary , Gene Library , Genomics , High-Throughput Nucleotide Sequencing , Humans , Nanopores , Polymerase Chain Reaction , RNA, Messenger , RNA, Viral/genetics , Recombination, Genetic , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL